Files
Medios-Macina/SYS/html_table.py

303 lines
11 KiB
Python

"""Small helper utilities for extracting structured records from HTML tables
using lxml.
Goal: make it trivial for provider authors to extract table rows and common
fields (title, link, standardized column keys) without re-implementing the
same heuristics in every provider.
Key functions:
- find_candidate_nodes(doc_or_html, xpaths=...)
- extract_records(doc_or_html, base_url=None, xpaths=...)
- normalize_header(name, synonyms=...)
This module intentionally avoids heavyweight deps (no pandas) and works with
`lxml.html` elements (the project already uses lxml).
"""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
from lxml import html as lxml_html
from urllib.parse import urljoin
import re
# Default xpaths for candidate result containers
_DEFAULT_XPATHS = [
"//table//tbody/tr",
"//table//tr[td]",
"//div[contains(@class,'list-item')]",
"//div[contains(@class,'result')]",
"//li[contains(@class,'item')]",
]
# Simple header synonyms (you can extend as needed)
_DEFAULT_SYNONYMS = {
"platform": "system",
"system": "system",
"name": "title",
"title": "title",
}
def _ensure_doc(doc_or_html: Any) -> lxml_html.HtmlElement:
if isinstance(doc_or_html, str):
return lxml_html.fromstring(doc_or_html)
return doc_or_html
def _text_or_img_title(el) -> str:
# Prefer img/@title if present (useful for flag icons)
try:
imgs = el.xpath('.//img/@title')
if imgs:
return str(imgs[0]).strip()
except Exception:
pass
return (el.text_content() or "").strip()
def find_candidate_nodes(doc_or_html: Any, xpaths: Optional[List[str]] = None) -> Tuple[List[Any], Optional[str]]:
"""Find candidate nodes for results using a prioritized xpath list.
Returns (nodes, chosen_xpath).
"""
doc = _ensure_doc(doc_or_html)
for xp in (xpaths or _DEFAULT_XPATHS):
try:
found = doc.xpath(xp)
if found:
return list(found), xp
except Exception:
continue
return [], None
def _parse_tr_nodes(tr_nodes: List[Any], base: Optional[str] = None) -> List[Dict[str, str]]:
out: List[Dict[str, str]] = []
for tr in tr_nodes:
try:
tds = tr.xpath("./td")
if not tds or len(tds) < 1:
continue
# canonical fields
rec: Dict[str, str] = {}
# Heuristic: if the first cell contains an anchor, treat it as the title/path
# (detail pages often put the file link in the first column and size in the second).
a0 = tds[0].xpath('.//a[contains(@href,"/vault/")]') or tds[0].xpath('.//a')
if a0:
rec["title"] = (a0[0].text_content() or "").strip()
href = a0[0].get("href")
rec["path"] = urljoin(base, href) if href and base else (href or "")
# Try to find a size cell in the remaining tds (class 'size' is common)
size_val = None
for td in tds[1:]:
s = td.xpath('.//span[contains(@class,"size")]/text()')
if s:
size_val = str(s[0]).strip()
break
if not size_val and len(tds) > 1:
txt = (tds[1].text_content() or "").strip()
# crude size heuristic: contains digits and a unit letter
if txt and re.search(r"\d", txt):
size_val = txt
if size_val:
rec["size"] = size_val
else:
# First cell often "system"/"platform"
rec["platform"] = _text_or_img_title(tds[0])
# Title + optional link from second column
if len(tds) > 1:
a = tds[1].xpath('.//a[contains(@href,"/vault/")]') or tds[1].xpath('.//a')
if a:
rec["title"] = (a[0].text_content() or "").strip()
href = a[0].get("href")
rec["path"] = urljoin(base, href) if href and base else (href or "")
else:
rec["title"] = (tds[1].text_content() or "").strip()
# Additional columns in common Vimm layout
if len(tds) > 2:
rec["region"] = _text_or_img_title(tds[2]).strip()
if len(tds) > 3:
rec["version"] = (tds[3].text_content() or "").strip()
if len(tds) > 4:
rec["languages"] = (tds[4].text_content() or "").strip()
out.append(rec)
except Exception:
continue
return out
def _parse_list_item_nodes(nodes: List[Any], base: Optional[str] = None) -> List[Dict[str, str]]:
out: List[Dict[str, str]] = []
for node in nodes:
try:
rec: Dict[str, str] = {}
# title heuristics
a = node.xpath('.//h2/a') or node.xpath('.//a')
if a:
rec["title"] = (a[0].text_content() or "").strip()
href = a[0].get("href")
rec["path"] = urljoin(base, href) if href and base else (href or "")
else:
rec["title"] = (node.text_content() or "").strip()
# platform, size
p = node.xpath('.//span[contains(@class,"platform")]/text()')
if p:
rec["platform"] = str(p[0]).strip()
s = node.xpath('.//span[contains(@class,"size")]/text()')
if s:
rec["size"] = str(s[0]).strip()
out.append(rec)
except Exception:
continue
return out
def normalize_header(name: str, synonyms: Optional[Dict[str, str]] = None) -> str:
"""Normalize header names to a canonical form.
Defaults map 'platform' -> 'system' and 'name' -> 'title', but callers
can pass a custom synonyms dict.
"""
if not name:
return ""
s = str(name or "").strip().lower()
s = re.sub(r"\s+", "_", s)
syn = (synonyms or _DEFAULT_SYNONYMS).get(s)
return syn or s
def extract_records(doc_or_html: Any, base_url: Optional[str] = None, xpaths: Optional[List[str]] = None, use_pandas_if_available: bool = True) -> Tuple[List[Dict[str, str]], Optional[str]]:
"""Find result candidate nodes and return a list of normalized records plus chosen xpath.
If pandas is available and `use_pandas_if_available` is True, attempt to parse
HTML tables using `pandas.read_html` and return those records. Falls back to
node-based parsing when pandas is not available or fails. Returns (records, chosen)
where `chosen` is the xpath that matched or the string 'pandas' when the
pandas path was used.
"""
# Prepare an HTML string for pandas if needed
html_text: Optional[str] = None
if isinstance(doc_or_html, (bytes, bytearray)):
try:
html_text = doc_or_html.decode("utf-8")
except Exception:
html_text = doc_or_html.decode("latin-1", errors="ignore")
elif isinstance(doc_or_html, str):
html_text = doc_or_html
else:
try:
html_text = lxml_html.tostring(doc_or_html, encoding="unicode")
except Exception:
html_text = str(doc_or_html)
# Try pandas first when available and requested
if use_pandas_if_available and html_text is not None:
try:
import pandas as _pd # type: ignore
dfs = _pd.read_html(html_text)
if dfs:
# pick the largest dataframe by row count for heuristics
df = max(dfs, key=lambda d: getattr(d, "shape", (len(getattr(d, 'index', [])), 0))[0])
try:
rows = df.to_dict("records")
except Exception:
# Some DataFrame-like objects may have slightly different APIs
rows = [dict(r) for r in df]
records: List[Dict[str, str]] = []
for row in rows:
nr: Dict[str, str] = {}
for k, v in (row or {}).items():
nk = normalize_header(str(k or ""))
nr[nk] = (str(v).strip() if v is not None else "")
records.append(nr)
# Attempt to recover hrefs by matching anchor text -> href
try:
doc = lxml_html.fromstring(html_text)
anchors = {}
for a in doc.xpath('//a'):
txt = (a.text_content() or "").strip()
href = a.get("href")
if txt and href and txt not in anchors:
anchors[txt] = href
for rec in records:
if not rec.get("path") and rec.get("title"):
href = anchors.get(rec["title"])
if href:
rec["path"] = urljoin(base_url, href) if base_url else href
except Exception:
pass
return records, "pandas"
except Exception:
# Pandas not present or parsing failed; fall back to node parsing
pass
# Fallback to node-based parsing
nodes, chosen = find_candidate_nodes(doc_or_html, xpaths=xpaths)
if not nodes:
return [], chosen
# Determine node type and parse accordingly
first = nodes[0]
tag = getattr(first, "tag", "").lower()
if tag == "tr":
records = _parse_tr_nodes(nodes, base=base_url)
else:
# list-item style
records = _parse_list_item_nodes(nodes, base=base_url)
# Normalize keys (map platform->system etc)
normed: List[Dict[str, str]] = []
for r in records:
nr: Dict[str, str] = {}
for k, v in (r or {}).items():
nk = normalize_header(k)
nr[nk] = v
normed.append(nr)
return normed, chosen
# Small convenience: convert records to SearchResult. Providers can call this or
# use their own mapping when they need full SearchResult objects.
from ProviderCore.base import SearchResult # local import to avoid circular issues
def records_to_search_results(records: List[Dict[str, str]], table: str = "provider") -> List[SearchResult]:
out: List[SearchResult] = []
for rec in records:
title = rec.get("title") or rec.get("name") or ""
path = rec.get("path") or ""
meta = dict(rec)
out.append(
SearchResult(
table=table,
title=str(title),
path=str(path),
detail="",
annotations=[],
media_kind="file",
size_bytes=None,
tag={table},
columns=[(k.title(), v) for k, v in rec.items() if k and v],
full_metadata={"raw_record": rec, "raw": rec},
)
)
return out